Energy Web Documentation
  • Energy Web Ecosystem
  • Launchpad by Energy Web
  • EWC Validator Documentation
  • Community Ressources
  • Legacy documentation
  • Welcome to Energy Web
  • Glossary
  • Solutions 2023
    • ↔️Data Exchange
      • Data Exchange Overview
      • Data Exchange Architecture
      • Use Cases and Refrence Implementations
        • Digital Spine for Electricity Markets
          • Digital Spine Integration Client Deployment Guide - from Azure marketplace
        • E-Mobility Management
    • 🔌Open Charging Network
      • Create and Manage an OCN Identity
      • Connect an OCPI/OCN Party to a Node
        • 1. Make your backend service OCN-ready
        • 2. Select an OCN Node and register in OCN Registry
        • 3. Manage your Whitelist and Blacklist
        • 4. Connect your service to an OCN Node
      • Run an OCN Node
      • Use the OCN Service Interface
        • Offer an OCN Service
        • Sign up for an OCN Service
      • Develop on the Test Network
      • Develop on the Production Network
      • Open Source Development
        • Maturity Model, Feature Roadmap and Releases
        • Developer Community Calls
      • E-Mobility Dashboard v0.1
  • EW-DOS Technology Components 2023
    • EW-DOS Overview
    • Worker Nodes
      • Worker Node Process Diagrams
      • Worker Node Architecture
      • Worker Node Guides
        • Deploy Worker Nodes
        • Customize Worker Logic
    • Identity and Access Management (IAM)
      • IAM Guides
        • Implement an SSI Hub instance
        • Verifiable Credential API
        • Sign-In with Ethereum
        • Using Switchboard
          • Switchboard Transaction Cost Estimates
      • IAM Patterns
        • Assets as Ownable Smart Contracts
        • Credential Lifecycle
        • Credential Metadata
        • SSI Credential Governance using ENS Domains
      • IAM Libraries
      • SSI Hub
      • Switchboard Application
    • Decentralized Data Hub (DDHub)
      • DDHub Message Broker
      • DDHub Client Gateway
      • DDHub Patterns
        • Channels and Topics
      • DDHub Guides
    • Green Proofs Contracts
    • Energy Web X
    • The Energy Web Chain
      • EWC Overview
      • System Architecture
        • Proof-of-Authority Consensus Mechanism
        • System Contracts
          • Name Registry
          • Holding Contract
          • Block Reward Contract
          • Validator-Set Contracts
        • Validator Node Architecture
      • Energy Web Block Explorer
      • Validator Node Installation Specifications
        • Volta Test Network: Validator Node Installation
      • Energy Web Chain Governance
      • EWC Guides and Tutorials
        • Getting started with Energy Web Chain
        • Developing on the Volta Test Network and Main Network (Energy Web Chain)
        • Run a Local RPC Node
          • Run RPC Node using Nethermind client
        • Deploy a Smart Contract on Volta with Remix
        • Interacting with Smart Contracts in EW-DOS
        • Set up MetaMask to interact with Energy Web Chain
        • Using the Ethereum Name Service
        • Using Oracles
      • Energy Web Token (EWT)
  • 🧠Foundational Concepts
    • Open-Source Software
    • Scaling Access to Grid Flexibility
    • Facilitating Clean Energy Purchases
    • Ethereum
      • Transactions and Transaction Costs
    • Self-Sovereign-Identity
      • Self-Sovereign Use Case Interaction
    • Cryptocurrency Wallets
      • Software cryptocurrency wallets
        • Metamask
        • Mycrypto wallet
      • Hardware cryptocurrency wallets
      • Hierarchical Deterministic (HD) Wallets
Powered by GitBook
On this page
  • OpenEthereum Client
  • Telemetry Monitoring system
  • Telemetry Architecture
  • Data Collection Process Overview
Export as PDF
  1. EW-DOS Technology Components 2023
  2. The Energy Web Chain
  3. System Architecture

Validator Node Architecture

Components for running a validator node and monitoring validator behavior

PreviousValidator-Set ContractsNextEnergy Web Block Explorer

Last updated 3 years ago

The system architecture of a validator node on the Energy Web Chain is made up of two components:

Together these two components allow validators to run a local node of the chain, validate transactions, seal blocks, and monitor validator behavior and metrics.

OpenEthereum Client

A client is software that allows you to run a local node on your machine and interact directly with the blockchain. Every validator must run a full node in order to participate in validation.

Remember that the Energy Web Chain is derived from the Ethereum blockchain. Because of this we use an Ethereum client to connect with the chain called . Anyone can create a client, as long as it implements the protocols laid out in , and there are a number of Ethereum clients to choose from.

Energy Web uses the OpenEthereum client because it supports the , which is a consensus algorithm specifically for Proof-ofAuthority blockchains. OpenEthereum allows validators to connect to the chain, collect transactions and seal blocks according the AuRa consensus algorithm.

To read more about OpenEthereum, you can

To read more about Ethereum clients, see the

Telemetry Monitoring system

The monitoring system collects comprehensive, real-time data and metrics on validator performance and provides a user interface for viewing the data. It is important to gather as much data about the validator nodes as possible in order to ensure a secure and performant blockchain. To do so, we rely on well established industry solutions to transfer these metrics off the validator node to protect the sensitive nature of the data.

The use of the telemetry monitoring system is opt-in. Validators can disable it if they have their own monitoring system in place that allows for real time tracking of all relevant metrics.

Telemetry Architecture

There are four components involved in the data collection process:

Data Collection Process Overview

  1. The OpenEthereum client collects data on the validator node. Collected data includes:

    • CPU usage

    • Memory usage

    • Disk usage

    • Number of connected peers

    • List of visible P2P peers

    • Current block

    • Network latency to 3 different and major locations (e.g. cloudflare, google, amazon)

    • Network throughput

    • Network error rate

    • Number of SSH keys

    • Service status for SSH, docker and the parity container

    • SHA256 hashes of key system components/binaries

    • Current chain specification file (or hash)

  2. Telegraf collects relevant metrics from the host machine and the custom-built OpenEthereum metrics collector. The metrics collector allows Telegraf to receive the metrics from the OpenEthereum client

  3. The collected metrics are stored in an InfluxDB database and can be visualized using Grafana

client - monitors validator node behavior

: open-source server agent that collects data from the OpenEthereum client

- open source database that stores the data collected from Telegraf

- data visualization tool that queries the InfluxDB for data and provides graphical interface for data visualization

All components are run in separate docker containers managed by docker compose. For additional information on docker visit: and .

OpenEthereum
Telegraf
InfluxDB
Grafana
https://docs.docker.com/
https://docs.docker.com/compose/
OpenEthereum
Ethereum’s yellow paper
Authority Roundtable (AuRa)
visit their wiki.
Ethereum documentation.
The OpenEthereum Client
Telemetry monitoring system